10. RAI-837: Simultaneous Localization and Mapping

a. Textbook

- Probabilistic Robotics by Sebastian Thrun et al.
- Introduction to Autonomous Mobile Robots by Roland Siegwart and Illah R.
 Nourbakhsh.
- Handouts and research articles may also be used by the instructor.

b. Objective

• This course focuses on Robot Localization and Mapping in unknown or partially known environments.

c. Course Outcome:

This course will furnish the students with practical knowledge of SLAM algorithms required for mapping and navigation in unknown of partially known environments.

d. Course Outline

- Introduction to the SLAM
 - Introduction to mobile robots and SLAM problems
 - Sensor models for SLAM (lidar, camera, odometry)
 - State estimation techniques (Bayesian filters, Kalman filters)
 - Mapping representations (occupancy grids, landmark maps)
 - Performance metrics for SLAM algorithms
- Fundamental SLAM Algorithms
 - Extended Kalman Filter (EKF) based SLAM for robots with linear dynamics
 - Unscented Kalman Filter (UKF) for non-linear SLAM problems
 - Rao-Blackwellized Particle Filters (RBPF) for high-dimensional state estimation

• Advanced SLAM Algorithms

- FastSLAM variants (FastSLAM 1.0, 2.0)
- Tree-based SLAM
- Graph-based SLAM
- Optimization-based SLAM
- Resource-Constrained SLAM
 - Low-power SLAM algorithms: Prioritizing computational efficiency for powerlimited robots.

- Approximate SLAM techniques: Balancing accuracy and computational cost for real-time applications.
- Localization with limited resources: Methods for robot localization using minimal sensor data and processing power.
- Resource-aware SLAM implementation: Considering hardware constraints during algorithm selection and implementation.

• Visual SLAM

- Monocular SLAM
- Stereo and Multi-camera SLAM
- ORB-SLAM
- Large-Scale Direct SLAM
- SLAM using Catadioptric Sensors
- SLAM for Complex Robot Platforms
 - SLAM for robot navigation in social spaces
 - SLAM for UAVs (Unmanned Aerial Vehicles)
 - SLAM for cooperative multi-robot systems
 - SLAM under dynamic environments with moving obstacles